Generation of maximally entangled

states with sub-luminal
Lorentz boosts

Veiko Palge and Jacob Dunningham

Quantum Information Group
School of Physics and Astronomy
University of Leeds

pyvp@leeds.ac.uk

3 April 2013



.
Outline
Introduction
Wigner rotation
Lorentz boosted single spin-1/2 particle
Particle in different boost scenarios
Spin and momentum from a geometric point of view

Conclusion

2of 24



Motivation

® Entanglement as resource in quantum information theory. Enables to
create technology that performs information processing tasks which
are beyond the limits of the classical realm

m The theory of entanglement given in non-relativistic QM, i.e. Galilean
spacetime. But spacetime is ultimately relativistic theory, hence need
to study relativistic entanglement

Historical background

® In 1926, Thomas discovers Thomas precession and derives the
relativistic correction for the hydrogen atom [5, 6]

m In 1939, Wigner provides a comprehensive treatment of unitary
representations for the Lorentz group [7]

m First papers on relativistic quantum information on single and two
particle entanglement around 2000 [1, 4, 2, 3]
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Entanglement
® The term entanglement (Verschrdnkung) was coined by Schrodinger
(1935) in the discussion of the EPR (1935) experiment

m Bell (1964) shows that entangled quantum states display correlations
that cannot be reproduced by classical physics

® Entanglement is regarded as the feature that distinguishes quantum
and classical physics

® Quantum information theory uses entangled states to perform
information processing tasks that are beyond classical realm
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Entanglement II

® A quantum state |¢) is entangled if it cannot be written as a product
of its constituents. For bipartite systems

[*%) # [v7) ® [97) = 194 [07) D

= Example: for a two-level bipartite system, |)) € C? ® C?
0 |0)|0), |0)|1), %|0) (|0) +|1)) etc are product
7 75 (10)]0) £]1)[1)), 75 (10)[1) £ [1)]0)) etc are entangled
m In general, characterization of entanglement is a non-trivial task.

Bipartite entanglement is now well understood. The theory of
multi-partite entanglement an active field of research
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Galilean spacetime

m Galilei boosts form a group: for any two (non-collinear) Galilei boosts
G(v1),G(vy), there exists a third G(v3) boost such that

G(Vz)G(V]) = G(V3) , V3=V +Vy. 2

Adding velocities non-relativistically, v; + v, = v3

SII
G_l(’l)23
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/\

V12
—

Figure 1. Three Galilei frames.
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Minkowski spacetime
m Lorentz boosts do not form a group: two non-collinear Lorentz boosts
AW2)A(v1) # A(vs), A(v2)A(v1) = R(w)A(v3) 3)

where R(w) € SO(3) is Wigner’s rotation for massive particles

Rotation angle

_ sin 6
tan 5 = &g b
U2
Kinematic effect due to spacetime
structure, depends solely on the velocity

0 > and acceleration of the object
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Non-relativistic spacetime
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Figure 2. Non-relativistic frames.
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Relativistic spacetime
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Figure 3. Relativistic frames.
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Wigner rotation: example 1

® Bob and Alice to meet. Alice gives Bob instructions: By (v1)Bx(vo). But
Bob has a lot on his mind and takes instead the route By (vo)By (v1).
Alice and Bob never meet. . .

B;,; (Uo)
‘_/V
By (v1) By (v1)
Bw (UO)

Figure 4. Two Lorentz boosts non-commutative.
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Wigner rotation properties
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Figure 5. Dependence of Wigner rotation on the angle 6 between two boosts.
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Lorentz boosted single spin-1/2 particle

® Focus on a single massive spin-1/2 particle with momentum
“Assuming that spin and momentum are initially in a product state,
will they become entangled after two non-collinear Lorentz boosts?”
Generic state

=Y [ o@)lp) ) du) @
A
To Lorentz boosted observer O” the state of the particle appears
transformed
a(p) = Yy Z Un(R(A, A™'p))tb (A7) (5)
® Example

(Ip) + 1 =p)) [0) = p")IN) + | = p") 7 (6)
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Lorentz boosted single spin-1/2 particle

Since we are interested in spin, trace out the momentum
p§ =T (UW)[9)([U"(A))
=Y [ e @)l dutp) %
AK

To quantify entanglement, we calculate the von Neumann entropy of spin

S(ps) = —Tr(pg log ps) 8)
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Lorentz boosted single spin-1/2 particle

m Rest frame state: wavefunction x-symmetric Gaussian centred at
Po = (£Px0, 0, P=0), spin z-up and boost in the z-direction

10) 0)

Figure 6. Single spin-1/2 particle with spin and momentum. Lorentz boost in the
z-direction.
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Particle in different boost scenarios
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Figure 7. (a) Spin entropy for an x-symmetric Gaussian with ¢/m = 1 with boost geometry
0 = 90° and v; = 0.985. (b) Schematic representation of Gaussian in the rest frame.
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Particle in different boost scenarios
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Figure 8. (a) Spin entropy for x-symmetric Gaussians with ¢ /m = 1. Three boost
geometries with different ; are shown, all v; = 0.985. (b) Schematic representation of
Gaussians in the rest frame, centered at different po = (£py0, 0, p;0) in the momentum

space. Boost angles 6, < 90°, 6, = 90° and 6, > 90° correspond to rest frame momenta
Do and are are shown for one peak of each state.
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Particle in different boost scenarios
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Figure 9. (a) Spin entropy for x-symmetric Gaussians with c/m = 1. Two boost geometries
0e,v1 = 0.999 and 0f,v1 = 0.99995, with 6 > 90° are shown. (b) Schematic
representation of Gaussians in the rest frame, centered at different py = (£px0, 0, pz0) in
the momentum space. Boost angles 6, < 90°, 6, = 90° and 6, > 90° correspond to rest

frame momenta p, and are are shown for one peak of each state.
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From a geometric point of view

= Vectors in the Hilbert space, |p)|\) € L(R®) ® C2, as vector fields A(p)
on the mass-shell of a particle with mass m

A pz 4 pZ A
Aw2 Ao | XY —woa
U(R(A,p))
—
Pz Pz
(a) b)

Figure 10. (a) Constant spin field in the rest frame. (b) Wigner rotated spin field in the
boosted frame.
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From a geometric point of view

= Spin state pg, found by tracing out momentum, as a (possibly infinite)
convex sum of spin projection operators |A(p))(A(p)| = I\(p) over the
support of the Gaussian

ps = a(=p2)ILx(=p2) + a(—p1)I\(=p1)
+ a(p1)IA(p1) + a(p2)x(p2) ()

where the coefficients satisfy >~ a(p;) =1

—(Jo
w2

Figure 11. Tracing out momentum amounts to forming a convex sum of spins IT, (p;) that are Wigner rotated by
w;i = w(p;), here represented on the Bloch sphere. The resulting spin state ps (boldface arrow) is generally mixed.
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Explaining behavior: saturation

® When two boosts at angle # approach the speed of light, Wigner

rotation asymptotically approaches a particular maximum value wy,
(see FIG. 5).

® This implies that each individual spin of the field asymptotically
approaches a particular p-dependent maximum rotation angle wy, (p)
as both boosts approach the speed of light.

® Since entropy is a monotonic function of spin, its behavior follows the
same pattern: it approaches asymptotically a particular level as
rapidity grows arbitrarily large.
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Explaining behavior: level of saturation

®m Why does saturation reach different levels for Gaussians initially
centered at different p,o?

® The maximum value of Wigner rotation w;, depends on the angle ¢
between two boosts. This means boost angle ¢ is determined by the
center po of the Gaussian wave packet.

m However, specifying 6 amounts to setting a bound on the maximum
value of rotation, that is, specifying wy,. The latter, in turn, sets a
bound to the maximum rotation of spin operators on the Bloch sphere
in FIG. 11 or, equivalently, entropy.

® As a result, for two Gaussians with angles 6, and 6, where 6, < 6,
entanglement saturates at a lower level for 6, than for 6,.
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Explaining behavior: the bump effect

® Why is it that for boost geometries with § > 90° entanglement initially
reaches a maximum value and thereafter saturates at a lower value? Because
spins ‘over-rotate’.

m Consider the scenario with v; = 0.999, § = 161° in FIG. 10a. Initially, as
rapidity starts to grow, spins start to rotate in opposite directions at either
Gaussian and so entanglement starts to increase in line with the explanation
above. At £ = 2.4, the effective spin of either Gaussian in FIG. 11 has rotated
by |w| = 90°, hence the spins of the left and right Gaussians become
orthogonal and entanglement attains the maximum value 1. Now as rapidity
increases further, spins ‘over-rotate’, becoming again non-orthogonal and
spin entropy starts to decrease.

® Eventually the Wigner rotation attains a maximum value w,, and entropy
saturates at a value less than 1.

= In the limiting case of large boosts v;,vs — 1, narrow Gaussians, ¢ — 0 and
boost angles # — 180°, the boosted state approaches a product state and
entanglement vanishes.
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Conclusion

® Entanglement is observer dependent and exhibits rich behavior in the
relativistic setting

® Entanglement change can be offered a natural geometric explanation

® Maximal entanglement between spin and momentum components of a
single particle can be achieved with sub-luminal boosts

® Boost parameters must be chosen carefully as too large boosts may
lead to deterioration of entanglement

m Effect persists for realistic states, i. e. Gaussian wave packets

[Palge, V and Dunningham, J. Generation of maximally entangled states with sub-luminal
Lorentz boosts. Physical Review A 85, 042322 (2012)]
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