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Motivation
� Entanglement as resource in quantum information theory. Enables to

create technology that performs information processing tasks which
are beyond the limits of the classical realm

� The theory of entanglement given in non-relativistic QM, i.e. Galilean
spacetime. But spacetime is ultimately relativistic theory, hence need
to study relativistic entanglement

Historical background
� In 1926, Thomas discovers Thomas precession and derives the

relativistic correction for the hydrogen atom [5, 6]
� In 1939, Wigner provides a comprehensive treatment of unitary

representations for the Lorentz group [7]
� First papers on relativistic quantum information on single and two

particle entanglement around 2000 [1, 4, 2, 3]
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Entanglement
� The term entanglement (Verschränkung) was coined by Schrödinger

(1935) in the discussion of the EPR (1935) experiment
� Bell (1964) shows that entangled quantum states display correlations

that cannot be reproduced by classical physics
� Entanglement is regarded as the feature that distinguishes quantum

and classical physics
� Quantum information theory uses entangled states to perform

information processing tasks that are beyond classical realm
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Entanglement II
� A quantum state |ψ〉 is entangled if it cannot be written as a product

of its constituents. For bipartite systems

|ψAB〉 6= |ψA〉 ⊗ |ψB〉 ≡ |ψA〉|ψB〉 (1)

� Example: for a two-level bipartite system, |ψ〉 ∈ C2 ⊗ C2

� |0〉|0〉, |0〉|1〉, 1√
2
|0〉 (|0〉+ |1〉) etc are product

�
1√
2
(|0〉|0〉 ± |1〉|1〉), 1√

2
(|0〉|1〉 ± |1〉|0〉) etc are entangled

� In general, characterization of entanglement is a non-trivial task.
Bipartite entanglement is now well understood. The theory of
multi-partite entanglement an active field of research
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Galilean spacetime
� Galilei boosts form a group: for any two (non-collinear) Galilei boosts

G(v1),G(v2), there exists a third G(v3) boost such that

G(v2)G(v1) = G(v3) , v3 = v1 + v2 . (2)

Adding velocities non-relativistically, v1 + v2 = v3

Figure 1. Three Galilei frames.
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Minkowski spacetime
� Lorentz boosts do not form a group: two non-collinear Lorentz boosts

Λ(v2)Λ(v1) 6= Λ(v3) , Λ(v2)Λ(v1) = R(ω)Λ(v3) (3)

where R(ω) ∈ SO(3) is Wigner’s rotation for massive particles

Rotation angle

tan ω
2 = sin θ

cos θ+D(v1,v2)

Kinematic effect due to spacetime
structure, depends solely on the velocity
and acceleration of the object
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Non-relativistic spacetime

Figure 2. Non-relativistic frames.
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Relativistic spacetime

Figure 3. Relativistic frames.
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Wigner rotation: example 1
� Bob and Alice to meet. Alice gives Bob instructions: By(v1)Bx(v0). But

Bob has a lot on his mind and takes instead the route Bx(v0)By(v1).
Alice and Bob never meet. . .

Figure 4. Two Lorentz boosts non-commutative.
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Wigner rotation properties
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Figure 5. Dependence of Wigner rotation on the angle θ between two boosts.
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Lorentz boosted single spin-1/2 particle
� Focus on a single massive spin-1/2 particle with momentum

“Assuming that spin and momentum are initially in a product state,
will they become entangled after two non-collinear Lorentz boosts?”
Generic state

|ψ〉 =
∑
λ

∫
ψλ(p)|p〉|λ〉dµ(p) (4)

To Lorentz boosted observer O′′ the state of the particle appears
transformed

ψλ(p) 7→ ψ′′λ(p) =
∑
κ

Uλκ(R(Λ,Λ−1p))ψκ(Λ−1p) (5)

� Example

(|p〉+ | − p〉) |0〉 Λ7−→ |p′′〉|↖〉+ | − p′′〉|↗〉 (6)
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Lorentz boosted single spin-1/2 particle
Since we are interested in spin, trace out the momentum

ρ′′S = Trp
(
U(Λ)|ψ〉〈ψ|U†(Λ)

)
=
∑
λκ

∫
ψ′′λ(p)ψ′′∗κ (p)|λ〉〈κ|dµ(p) (7)

To quantify entanglement, we calculate the von Neumann entropy of spin

S(ρ′′S ) = −Tr(ρ′′S log ρ′′S ) (8)
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Lorentz boosted single spin-1/2 particle
� Rest frame state: wavefunction x-symmetric Gaussian centred at

p0 = (±px0,0, pz0), spin z-up and boost in the z-direction

Figure 6. Single spin-1/2 particle with spin and momentum. Lorentz boost in the
z-direction.
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Particle in different boost scenarios
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Figure 7. (a) Spin entropy for an x-symmetric Gaussian with σ/m = 1 with boost geometry
θ = 90◦ and v1 = 0.985. (b) Schematic representation of Gaussian in the rest frame.

15 of 24



Particle in different boost scenarios
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Figure 8. (a) Spin entropy for x-symmetric Gaussians with σ/m = 1. Three boost
geometries with different θi are shown, all v1 = 0.985. (b) Schematic representation of
Gaussians in the rest frame, centered at different p0 = (±px0, 0, pz0) in the momentum
space. Boost angles θa < 90◦, θb = 90◦ and θa > 90◦ correspond to rest frame momenta
p0 and are are shown for one peak of each state.
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Particle in different boost scenarios
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Figure 9. (a) Spin entropy for x-symmetric Gaussians with σ/m = 1. Two boost geometries
θe, v1 = 0.999 and θf , v1 = 0.99995, with θ > 90◦ are shown. (b) Schematic
representation of Gaussians in the rest frame, centered at different p0 = (±px0, 0, pz0) in
the momentum space. Boost angles θa < 90◦, θb = 90◦ and θa > 90◦ correspond to rest
frame momenta p0 and are are shown for one peak of each state.
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From a geometric point of view
� Vectors in the Hilbert space, |p〉|λ〉 ∈ L(R3)⊗C2, as vector fields λ(p)

on the mass-shell of a particle with mass m

(a) (b)

Figure 10. (a) Constant spin field in the rest frame. (b) Wigner rotated spin field in the
boosted frame.
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From a geometric point of view
� Spin state ρS, found by tracing out momentum, as a (possibly infinite)

convex sum of spin projection operators |λ(p)〉〈λ(p)| = Πλ(p) over the
support of the Gaussian

ρS = α(−p2)Πλ(−p2) + α(−p1)Πλ(−p1)

+ α(p1)Πλ(p1) + α(p2)Πλ(p2) (9)

where the coefficients satisfy
∑

i α(pi) = 1

Figure 11. Tracing out momentum amounts to forming a convex sum of spins Πλ(pi) that are Wigner rotated by
ωi ≡ ω(pi), here represented on the Bloch sphere. The resulting spin state ρS (boldface arrow) is generally mixed.
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Explaining behavior: saturation
� When two boosts at angle θ approach the speed of light, Wigner

rotation asymptotically approaches a particular maximum value ωm
(see FIG. 5).

� This implies that each individual spin of the field asymptotically
approaches a particular p-dependent maximum rotation angle ωm(p)
as both boosts approach the speed of light.

� Since entropy is a monotonic function of spin, its behavior follows the
same pattern: it approaches asymptotically a particular level as
rapidity grows arbitrarily large.
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Explaining behavior: level of saturation
� Why does saturation reach different levels for Gaussians initially

centered at different pz0?
� The maximum value of Wigner rotation ωm depends on the angle θ

between two boosts. This means boost angle θ is determined by the
center p0 of the Gaussian wave packet.

� However, specifying θ amounts to setting a bound on the maximum
value of rotation, that is, specifying ωm. The latter, in turn, sets a
bound to the maximum rotation of spin operators on the Bloch sphere
in FIG. 11 or, equivalently, entropy.

� As a result, for two Gaussians with angles θa and θb, where θa < θb,
entanglement saturates at a lower level for θa than for θb.
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Explaining behavior: the bump effect
� Why is it that for boost geometries with θ ≥ 90◦ entanglement initially

reaches a maximum value and thereafter saturates at a lower value? Because
spins ‘over-rotate’.

� Consider the scenario with v1 = 0.999, θ = 161◦ in FIG. 10a. Initially, as
rapidity starts to grow, spins start to rotate in opposite directions at either
Gaussian and so entanglement starts to increase in line with the explanation
above. At ξ = 2.4, the effective spin of either Gaussian in FIG. 11 has rotated
by |ω| = 90◦, hence the spins of the left and right Gaussians become
orthogonal and entanglement attains the maximum value 1. Now as rapidity
increases further, spins ‘over-rotate’, becoming again non-orthogonal and
spin entropy starts to decrease.

� Eventually the Wigner rotation attains a maximum value ωm and entropy
saturates at a value less than 1.

� In the limiting case of large boosts v1, v2 → 1, narrow Gaussians, σ → 0 and
boost angles θ → 180◦, the boosted state approaches a product state and
entanglement vanishes.

22 of 24



Conclusion
� Entanglement is observer dependent and exhibits rich behavior in the

relativistic setting
� Entanglement change can be offered a natural geometric explanation
� Maximal entanglement between spin and momentum components of a

single particle can be achieved with sub-luminal boosts
� Boost parameters must be chosen carefully as too large boosts may

lead to deterioration of entanglement
� Effect persists for realistic states, i. e. Gaussian wave packets
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